欢迎光临安科瑞电气股份有限公司网站!
诚信促进发展,实力铸就品牌
服务热线:

15000352989

产品分类

Product category

技术文章 / article 您的位置:网站首页 > 技术文章 > 浅谈船舶交流电网绝缘监测及故障定位系统开发

浅谈船舶交流电网绝缘监测及故障定位系统开发

更新时间: 2023-04-27   点击次数: 365次

摘要:针对传统船舶电网绝缘监测装置可靠性不足、受泄漏电容的影响较大、测量范围较窄、测量准确度不高等问题,以船舶IT交流供配电网络为研究对象,建立一种能够实时监测整个电网系统对地绝缘值与泄漏电容值,实现实时故障定位的系统,并结合Hausdoff距离算法进行容错计算。结果表明:该系统可实时监测船舶电网的绝缘状态,并实现故障线路的准确定位,为操作人员保养设备和抢修设备提供及时、准确的判断信息,能够做到尽快排除故障,恢复供电,保证机电设备随时处于备航状态。

       关键词:绝缘检测;故障定位;信号注入法;交流电网

1.引

随着船舶工业的不断发展,智能船舶、智能机舱理念不断在船舶领域应用,同时也对现代船舶电气系统提出更高的要求。由于船舶常在高盐高湿环境下工作,船舶电力系统绝缘层故障发生率较高,因此为了船舶的安全运行,研究一种能够实时监船舶电网绝缘状态并及时进行故障定位的系统十必要。

上方法虽在某种程度上解决了绝缘监测系统的问题,但仍存在受泄漏电容的影响较大、测量范围窄和故障定位不易查找等缺点。为此,本文设计种绝缘监测装置,向船舶电网电缆导体上注入某特定频率的交流电压,利用软硬件滤波算法等技测量出等效接地点相应频率响应电流,计算出电网绝缘等效阻抗即系统的等效绝缘电阻和系地泄漏电容等,并通过安装在不同回路的环形互器检测获取与绝缘监测装置注入信号成正比的信,通过综合分析比较可实现对故障回路的快速自动定位

2.智能绝缘状态系统

21绝缘监测系统结

绝缘监测系统向被监测电网的任意两相相线上分别注入0.25Hz或0.15Hz的低频交流信号,与电网故障等效接地点形成通路回路;通过采集流过回路的电压信号,运算放大处理后输送至单片机控制器进行软件算法处理,计算出电网对地绝缘状态,包括绝缘电阻值与泄漏电容值;利用测量电容值设定预警和报警阈值进行预警/报警,经由通讯单元连接至故障定位装置通讯单元、上位机或上级模块通讯单元。

22绝缘监测系统工作流程

流过回路的电流信号经过采样电阻转换为电号。该电压采样信号经过双路一级电压跟随电路,其特性是电压放大倍数恒小于且接近于1,使得输出电压与输入电压是相同的,具有输入阻抗高、输出阻抗低的特点,从而起到缓冲、隔离、提高带载能作用。将电压跟随电路输出信号通过2级运算电路把微弱信号放大,将2路放大信号进行叠处理送给单片机控制器,由单片机控制器进行软件算法编程,计算出电网对地绝缘状态,包括绝电阻值与泄漏电容值。

入信号频率为f时,母线的对地电压为Uf当没有发生绝缘故障时流过线路的注入频率交流电流为In,其表达式为:

式中:I·n为注入电源在正常线路中产生的漏电流Uf为频率f的注入电源产生的母线对地电压;j90°因子,表示顺时针旋转90°;XCn为总的对地电容ω为角速度,ω=2πfCn为负载支路的对地电容

i发生接地短路故障或对地绝缘降低时,当于在线路对地电容旁边并联了一个短路电阻R其故障漏电流为Ii,其向量表达式为

中:I·i为注入电源在故障线路中产生的漏电流的向量;R为故障接地对地电阻;Ci为负载支路的对地容。

通过比较式(1)、式(2)可发现,故障后电量的值将大于正常的电流。比较各线路的漏电流幅值,能够准确判断出故障线路,实现绝缘故障支路的故障定位。

进行线路绝缘监测时,需要在线测量计算对电阻R。注入单一频率信号时,可通过式(2)直接算电阻R,且不受对地电容的影响。推导出故障线路的阻抗表达式

式中:Z为故障线路的测量阻抗值;Uf·频率为f的注入电源产生的母线对地电压的向量;C为负载支路的对地电容。将式(3)用实部、虚部形式表征可得:

 

求解式(4)、式(5),可得到此绝缘支路的对地电阻大小,从而实现注入单频信号f下对发生绝缘故障的支进行路在线电阻监测。

绝缘监测系统工作流程见图2。

2绝缘监测系统工作流程图

当电网工频电源和注入低频信号源同时作用时,故障线路上流过的电流为工频电流和低频电流两者的叠加,叠加电流

式中:Ig为发生接地故障时,故障支路上流过的工频流;If为注入低频信号后,故障支路上流过的工频电流;fg为工频频率;t为时间;αg为低频信号注入频电流的初始相位角;αf为低频信号注入时低电流的初始相位角。

过式(6)可发现,漏电电流是周期函数,通过傅里叶级数计算,可以得到漏电流幅值

3智能故障定位系统

于截取信号的船舶电网系统智能故障定位系电路示意图见图3。图中,R1R2为限压电阻,由2路开关切换配合控制截取电网峰值波形作为定位信号。信号在故障支路绝缘电阻Rf上流过,产生微弱漏电流Id,由高精度漏电流互感器提取微弱信号,接入采集电路处理,由单片机控制器进行分而判断故障支路。采集单元输入端连接在被监舶电网系统支路的高精度漏电流互感器上,输连接至单片机控制器,实现微弱定位信号的采集处理,并由单片机控制器进行分析,作出是否为故障支路的判断。

 

3故障定位电路示意图

31故障定位系统组成

由采集单元利用高精度漏电流互感器与采集电进行信号采集与变换并进行放大及滤波算法处理析,从而判断出被监测电网系统各支路对地绝缘态并由报警指示单元进行报警指示,实现实时检测、准确识别故障支路,提升船舶电网及设备的工作全连续性与可靠性;每一个智能故障定位装置可8路负载支路在第一次发生故障时自动准确识别定位并及时进行检修

CTAGND为第1支路的高精度漏电流互感接线端口,将微弱电流信号接入采集电路。采用针对微弱信号处理的TLC2652AI高精度放大器及失调高开环增益的OP07运算放大器的组合路,实现微弱定位信号的采集。调理信号送至单片机控制器ADC-IN0端口,并由软件算法处理进行分析,作出是否为故障支路的判断,其余7支路依次进行轮询处理

32故障定位系统工作过程

舶电网系统智能故障定位装置,由信号注入元向被监测电网系统与地之间注入高幅值低有效的定位电压信号,与电网故障等效接地点形成通回路。该电压信号取自电网系统本身,可避免增加额外注装置并提升抗干扰能力。由采集单元利高精度漏电流互感器与采集电路进行信号采集与换并进行放大及滤波算法处理分析,从而判断出监测电网系统各支路对地绝缘状态并由报警指示元进行报警指示。其作用是将报警信息传输给绝监测装置、触摸屏或上位机系统。每一个智能故定位装置可实现对各路负载支路在第一次发生故自动准确识别定位并及时进行检修。

障定位子系统工作流程图见图4

错算法采用Hausdorff算法测量比较波形距,计算公式为

AB2个有限点集;H(AB)为AB点集之间的Hausdorff距离;h(AB)为点集A到点集B有向Hausdorff距离;h(BA)为点集B到点集AHausdorff距离;ab为相邻2个测量支路高精漏电流互感器的波形幅值经过多次采样得到的系列值

 

 

4故障定位流程

计算出n个最小值的最大值即单向Hausdorff距离h(A,B)和h(B,A)确定相邻两测量支路匹配度系数Hs[Hs=(1-H)],即判断相邻两支路波形幅值的差异设定阈值。如果超出阈值则舍弃此次测量,否则认可,从而排除错误信号。

4绝缘监测及绝缘故障定位产品

 


4.1绝缘监测及绝缘故障定位产品

 

 


AIM-T系列工业用绝缘监测仪

 


 

AIM-T系列绝缘监测仪主要应用在工业场所IT配电系统中,主要包括AIM-T300、AIM-T500和AIMT500L三款产品,均适用于纯交流、纯直流以及交直流混合的系统。

其中AIM-T300适用于450V以下的交流、直流以及交直流混合系统,AIM-T500适用于800V以下的交流、直流以及交直流混合系。AIM-T500L相比AIM-T500增加了绝缘故障定位功能。

4.2绝缘故障定位产品

工业用绝缘故障定位产品配合AIM-T500L绝缘监测仪使用,主要包括ASG200测试信号发生器,AIL200-12绝缘故障定位仪,AKH-0.66L系列电流互感器,适用于出线回路较多的IT配电系统。

4.3绝缘监测耦合仪

绝缘监测耦合仪配合AIM-T500绝缘监测仪使用,主要包括ACPD100,ACPD200,适用于交流电压高于690V,直流电压高于800V的IT配电系统。

 


5技术参数

5.1绝缘监测仪技术参数


 

 

5.2测试信号发生器技术参数

5.3绝缘故障定位仪技术参数

        5.4 AKH-0.66L系列电流互感器技术参数

5.5绝缘监测耦合仪技术参数

6结论

(1)利用通信单元和单片机连接绝缘监测及故障定系统与上位机,使得数据快速传输。

(2)通过单片机计算注入法监测系统的绝缘电阻值与漏电容值,体现系统智能化功能。

(3)采用Hausdorff容错算法,设定阈值对故障定位系统进行优化,提高故障定位精度

在实际应用中,系统排除了泄漏电容的影响,提了测量范围,减轻了故障排除的劳动力且节约时体积小、重量轻,安装灵活,维护方便,运行可靠。